GCE BIOLOGY BY1

Question			Marking details	Marks Available
2.	(a)	(i)	Lock and key;	1
		(ii)	Theory 1/ induced fit;	1
	(b)		Enzyme substrate complex; NOT ESC/ ES complex	1
	(c)		Lower the activation energy/eq;	1
	(d)		Enzyme/ active site is unchanged/can be re-used; NOT active sites are a specific shape unqualified	1
	(e)		Temperature (not heat); pH ; NOT acidity Enzyme concentration; Substrate concentration; NOT amount	3
	(f)		Intracellular: inside the cell + Extracellular:outside the cell; NOT inside body	1
			Question 2 total	[9]

Question		Marking details	Marks Available
4.	(a)	Root tip/ shoot tip/meristem;	1
	(b)	A Anaphase; B Prophase; C Telophase; D Metaphase;	4
	(c)	Interphase; It is the longest phase;	2
	(d)	(All cells) would be \{haploid/half the number of chromosomes\}; NOT cells have fewer/ less chromosomes	2
		(All cells) would be genetically different; Question 4 Total	[9]

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :--- | :--- | :---: |
| (a) | (i) | 1 | |
| (ii) | two layers/ double layer of phospholipids;
 NOT bilayer
 fatty acid;
 (iii) | Any 2 from:
 transport/ form hydrophilic pores/ active transport/ channel
 proteins/ facilitated diffusion;
 receptors/ cell recognition;
 enzyme systems; | 2 max |
| (b) | Decreased fluidity/ rigid membrane
 - cells/ membranes more easily damaged (as blood flows)/
 cannot pass through capillaries so easily;
 Membrane proteins change shape / denatured \{carriers/
 receptors/membrane enzymes\}
 - so \{reduced/no\} \{transport/movement\} of molecules;
 Any 2 from:
 UUnestricted/ uncontrolled\} \{Cell division/mitosis\};
 Forming a mass of cells/ tumour;
 Preventing \{normal cells/ organs\} from functioning;
 (c)
 Question 5 Total | 2 | |

Question		Marking details	Marks Available
6.	(a)	Causes change in shape of enzyme/active site; So substrate no longer fits into active site; $\{\mathrm{No} /$ fewer $\}$ enzyme substrate complexes;	2 max
	(b)	\{(Insoluble) enzymes/ (enzyme) aggregates\} cannot pass through the filter/ ORA; So the product is uncontaminated with enzymes/ ORA;	2
	(c)	Can tolerate $\{\underline{h i g h e r ~ t e m p e r a t u r e s / g r e a t e r ~ r a n g e ~ o f ~} \mathrm{pHs}\}$; NOT range of temperatures Easily recovered for reuse/ enzymes stay in aggregates/ reused qualified/ uncontaminated product/ separated from product; NOT reused unqualified/ enzymes reused Several enzymes can be used together; Easy addition/removal of enzymes;	3 max
	(d)	Any one from : Gel capsule/alginate beads/ gel beads; cellulose fibres; gel membrane; porous glass beads; NOT inert matrix unqualified/ encapsulation unqualified	1 max

Question			Marking details	Marks Available
7.	(a)	(i)	$\{0.0 \mathrm{M} /$ distilled water $\}$ increase in mass and $\{1.0 \mathrm{M} /$ sucrose solution\} decrease in mass;	1
			Turgid;	1
		(ii) (iii)	Water moves out of the \{cell/ potato\};	3 max
			By osmosis;	
			The external solution has a \{lower water potential than the cell/is hypertonic/ more negative\}/ ORA ; Potato becomes flaccid/cells are plasmolysed;	
		(iv) (v)	Isotonic;	1
			1. Where the line crosses the $\{X /$ horizontal axis $\}$ there is no change in \{mass/weight\};	3 max
			2. So $\boldsymbol{\Psi}_{\text {cell }}=\boldsymbol{\Psi}_{\text {external }}$ solution (can be expressed in words); 3. This is $0.3(\mathrm{M})$ sucrose; (must be linked to point 1 or 2)	
			4. And converts to -860 kPa from the (conversion) table; 5. $\left(\right.$ So $\boldsymbol{\Psi}_{\text {cell }}$ potato $)=-860 \mathrm{kPa}$;	
	(b)			2
			- 1 mark for correct drawing of a plasmolysed plant cell(at any stage); (cell wall must be double line) - 1 mark for correct labelling of a plasmolysed plant cell (plasma membrane pulled away from cell wall - both labelled correctly/ accurately); Question 7 Total	[11]

Question			Marking details	Marks Available
8.	(a)		A. Monosaccharides / single sugars plus 2 suitable examples; B. Diagram of hexose/glucose; C. Alpha and beta forms of glucose shown; (can be description) D. Pentoses/deoxyribose/ribose and presence in DNA/RNA; E. Trioses in photosynthesis/respiration/metabolic pathways; F. Disaccharides plus 2 suitable examples; G. Correct formation of glycosidic bond (stated or diagrams, labelled); H. 2 suitable examples of where disaccharides are found (milk sugar/germinating seeds/transport in plant stems); I. Starch in plant cells for storage of glucose; NOT energy J. Correct reference to starch structure (alpha glucose/amylose \& amylopectin/1-4 and 1-6 linkages/amylose spiral chain/amylopectin branched); K. Glycogen in animal cells for glucose storage ; L. Glycogen has branched chains; M. Cellulose in plant cell walls/structural polysaccharide; N. Correct reference to cellulose structure (beta glucose/microfibrils/ chains held together by H bonds/alternate 180° glucose); O. Correct reference to chitin (amino groups/ use in \{exoskeleton/ fungal cell walls\})	

Quest	Marking details	Marks Available
(b)	A. Ref to DNA and RNA; B. Diagram/description of a nucleotide with correct labels/terms (phosphate \& pentose sugar \& nitrogenous/eq base); C. DNA named sugar Deoxyribose; must link to DNA D. Ref to purines and pyrimidines; E. Correct identification of purines and pyrimidines (Full names only); F. Ref to Uracil replacing thymine in RNA; G. Correct base pairing A-T, C-G (Allow letters;allow from diagram) H. Description/labelled diagram of double helix in DNA; I. Held together by H - bonding; J. Functions of DNA (i) replication in dividing cells; K. (ii) code/template for protein synthesis; L. Description of RNA as a single chain/ strand (of nucleotides); NOT single helix M. Ref correct sugar Ribose in RNA; correctly linked N. mRNA carries genetic code from the nucleus to the ribosome; O. correct reference to tRNA/ribosomal RNA;	[10]

